Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.399
Filtrar
1.
J Econ Entomol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602338

RESUMO

On-farm losses of peanuts (Arachis hypogaea L., Fabales: Fabaceae) pose a persistent threat to the sustainable production and value of peanuts in the United States. This study presents empirical data on the spatial distribution of subterranean insect pests and various quality aspects of peanuts. Surveys were conducted in 20 randomly selected peanut fields in 10 counties in Northeast, Southeast, and Southwest Georgia. The primary insect pests found in Georgia's peanut production counties were Pangaeus bilineatus (Say), Elasmopalpus lignosellus (Zeller), and Diabrotica undecimpunctata Howardi. In the northeast counties, a high prevalence of P. bilineatus led to a significant increase in insect-damaged pods (%IDP), insect-damaged kernels (%IDK), discolored kernels (%DK), pod weight loss (%PWL), and kernel weight loss (%KWL). Similarly, southeast counties had a high %DK, cracked pods (%CP), and E. lignosellus infestation. In southwest counties, predominantly high D. undecimpunctata infestations resulted in the highest %IDP. Moisture content (%MC) was excessively high in all the counties (22.19%-23.17%). Preharvest aflatoxin contamination in peanuts was prevalent across all studied locations, particularly in counties with a high incidence of P. bilineatus and may cause increased risk in aflatoxin levels along the supply chain. Nevertheless, the diverse regional abundance of insect pests and the widespread presence of aflatoxins in Georgia's peanut fields offer valuable insights for developing integrated pest management strategies targeting subterranean insect pests. This is especially crucial in addressing the impact of P. bilineatus, E. lignosellus, and D. undecimpunctata on aflatoxins content of peanuts and determining the pathway for mitigation of aflatoxin contaminations in peanuts at harvest.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38593870

RESUMO

BACKGROUND: Siglec-3 (CD33) is a major Siglec expressed on human mast cells and basophils and engagement of CD33 leads to inhibition of cellular signaling via immunoreceptor tyrosine-based inhibitory motifs (ITIMs). OBJECTIVE: We sought to inhibit human basophil degranulation by simultaneously recruiting inhibitory CD33 to the IgE-FcεRI complex using monoclonal anti-IgE directly conjugated to CD33 ligand (CD33L). METHODS: Direct and indirect basophil activation tests (BAT) were used to assess both antigen-specific (peanut) and antigen non-specific (polyclonal anti-IgE) stimulation. Whole blood from allergic donors was used for direct BAT, whereas non-food allergic donor blood was passively sensitized with peanut-allergic plasma in the indirect BAT. Blood was incubated with anti-IgE-CD33L or controls for one hour or overnight, then stimulated with peanut, polyclonal anti-IgE, or N-formylmethionyl-leucyl-phenylalanine (fMLP) for 30 minutes. Degranulation was determined by measuring CD63 expression on the basophil surface by flow cytometry. RESULTS: Incubation for one hour with anti-IgE-CD33L significantly reduced basophil degranulation after both allergen-induced (peanut) and polyclonal anti-IgE stimulation, with further suppression after overnight incubation with anti-IgE-CD33L. As expected, anti-IgE-CD33L did not block basophil degranulation due to fMLP, providing evidence that this inhibition is IgE-pathway specific. Finally, CD33L is necessary for this suppression, as monoclonal anti-IgE without CD33L was unable to reduce basophil degranulation. CONCLUSIONS: Pre-treating human basophils with anti-IgE-CD33L significantly suppressed basophil degranulation through the IgE-FcεRI complex. The ability to abrogate IgE-mediated basophil degranulation is of particular interest, as treatment with anti-IgE-CD33L prior to antigen exposure could have broad implications for the treatment of food, drug, and environmental allergies.

3.
Food Technol Biotechnol ; 62(1): 78-88, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601957

RESUMO

Research background: Peanut oil (Arachis hypogaea L.) is a rich source of unsaturated fatty acids. Its consumption has been reported to have biological effects on human health. Unsaturated, especially polyunsaturated fatty acids (PUFA) found in peanut oil are highly susceptible to oxidation, leading to the formation of harmful compounds during processing and storage. The aim of this study is to prevent the oxidation of peanut oil PUFA by encapsulation in a protein-polysaccharide complex using microwave drying. Experimental approach: The combined effect of corn starch (CS) and whey protein isolate (WPI) was evaluated for ultrasound-assisted microwave encapsulation of peanut oil to prevent oxidative degradation. The effect of independent parameters, viz. CS:WPI mass ratio (1:1 to 5:1), lecithin mass fraction (0-5 %), ultrasonication time (0-10 min) and microwave power (150-750 W) on the encapsulation of peanut oil was evaluated using response surface methodology (RSM). The process responses, viz. viscosity and stability of the emulsion, encapsulation efficiency, peroxide value, antioxidant activity, free fatty acids (FFA), moisture, angle of repose and flowability (Hausner ratio (HR) and Carr's Index (CI)) were recorded and analysed to optimize the independent variables. Results and conclusions: The viscosity of all emulsions prepared for encapsulation by ultrasonication ranged from 0.0069 to 0.0144 Pa·s and more than 90 % of prepared combinations were stable over 7 days. The observed encapsulation efficiency of peanut oil was 21.82-74.25 %. The encapsulation efficiency was significantly affected by the CS:WPI mass ratio and ultrasonication. The peroxide value, antioxidant activity and FFA ranged from 1.789 to 3.723 mg/kg oil, 19.81-72.62 % and 0.042-0.127 %, respectively. Physical properties such as moisture content, angle of repose, HR and CI were 1.94-8.70 %, 46.5-58.3°, 1.117-1.246 and 10.48-22.14 %, respectively. The physical properties were significantly affected by surface properties of the capsules. The higher efficiency (74.25 %) of peanut oil encapsulation was achieved under optimised conditions of CS:WPI mass ratio 1.25, 0.25 % lecithin, 9.99 min ultrasonication and 355.41 W microwave power. Novelty and scientific contribution: The results of this work contribute to the fields of food science and technology by providing a practical approach to preserving the nutritional quality of peanut oil and improving its stability through encapsulation, thereby promoting its potential health benefits to consumers and applications in various industries such as dairy and bakery.

4.
Food Technol Biotechnol ; 62(1): 4-14, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601963

RESUMO

Research background: Peanut allergy poses a significant threat to human health due to the increased risk of long-term morbidity at low doses. Modifying protein structure to affect sensitization is a popular topic. Experimental approach: In this study, the purified peanut allergen Ara h 1 was enzymatically hydrolysed using Flavourzyme, alkaline protease or a combination of both. The binding ability of Ara h 1 to antibodies, gene expression and secretion levels of the proinflammatory factors interleukin-5 and interleukin-6 in Caco-2 cells was measured. Changes in the secondary and tertiary structures before and after treatment with Ara h 1 were analysed by circular dichroism and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Results and conclusions: The results indicated a decrease of the allergenicity and proinflammatory ability of Ara h 1. The evaluation showed that the Flavourzyme and alkaline protease treatments caused particle shortening and aggregation. The fluorescence emission peak increased by 3.4-fold after the combined treatment with both proteases. Additionally, the secondary structure underwent changes and the hydrophobicity also increased 8.95-fold after the combined treatment. Novelty and scientific contribution: These findings partially uncover the mechanism of peanut sensitization and provide an effective theoretical basis for the development of a new method of peanut desensitization.

5.
Pediatr Allergy Immunol ; 35(4): e14115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566365

RESUMO

BACKGROUND: Introducing peanut products early can prevent peanut allergy (PA). The "Addendum guidelines for the prevention of PA in the United States" (PPA guidelines) recommend early introduction of peanut products to low and moderate risk infants and evaluation prior to starting peanut products for infants at high risk for PA (those with severe eczema and/or egg allergy). Rapid adoption of guidelines could aid in lowering the prevalence of PA. The Intervention to Reduce Early (Peanut) Allergy in Children (iREACH) trial was designed to promote PPA guideline adherence by pediatric clinicians. METHODS: A two-arm, cluster-randomized, controlled clinical trial was designed to measure the effectiveness of an intervention that included clinician education and accompanying clinical decision support tools integrated in electronic health records (EHR) versus standard care. Randomization was at the practice level (n = 30). Primary aims evaluated over an 18-month trial period assess adherence to the PPA guidelines using EHR documentation at 4- and 6-month well-child care visits aided by natural language processing. A secondary aim will evaluate the effectiveness in decreasing the incidence of PA by age 2.5 years using EHR documentation and caregiver surveys. The unit of observation for evaluations are individual children with clustering at the practice level. CONCLUSION: Application of this intervention has the potential to inform the development of strategies to speed implementation of PPA guidelines.


Assuntos
Hipersensibilidade a Ovo , Hipersensibilidade a Amendoim , Lactente , Criança , Humanos , Estados Unidos , Pré-Escolar , Hipersensibilidade a Amendoim/epidemiologia , Hipersensibilidade a Amendoim/prevenção & controle , Arachis , Imunoglobulina E
6.
Plant Physiol Biochem ; 210: 108596, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38579541

RESUMO

The peanut plant is one of the most economically important crops around the world. Abiotic stress, such as drought, causes over five hundred million dollars in losses in peanut production per year. Peanuts are known to produce prenylated stilbenoids to counteract biotic stress. However, their role in abiotic stress tolerance has not been elucidated. To address this issue, hairy roots with the capacity to produce prenylated stilbenoids were established. An RNA-interference (RNAi) molecular construct targeting the stilbenoid-specific prenyltransferase AhR4DT-1 was designed and expressed via Agrobacterium rhizogenes-mediated transformation in hairy roots of peanut cultivar Georgia Green. Two transgenic hairy roots with the RNAi molecular construct were established, and the downregulation of AhR4DT-1 was validated using reverse transcriptase quantitative PCR. To determine the efficacy of the RNAi-approach in modifying the levels of prenylated stilbenoids, the hairy roots were co-treated with methyl jasmonate, hydrogen peroxide, cyclodextrin, and magnesium chloride to induce the production of stilbenoids and then the stilbenoids were analyzed in extracts of the culture medium. Highly reduced levels of prenylated stilbenoids were observed in the RNAi hairy roots. Furthermore, the hairy roots were evaluated in a polyethylene glycol (PEG) assay to assess the role of prenylated stilbenoids on water-deficit stress. Upon PEG treatment, stilbenoids were induced and secreted into the culture medium of RNAi and wild-type hairy roots. Additionally, the biomass of the RNAi hairy roots decreased by a higher amount as compared to the wild-type hairy roots suggesting that prenylated stilbenoids might play a role against water-deficit stress.

7.
Gene ; 916: 148425, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38575102

RESUMO

Peanut is an important cash crop used in oil, food and feed in our country. The rapid development of sequencing technology has promoted the research on the related aspects of peanut genetic breeding. This paper reviews the research progress of peanut origin and evolution, genetic breeding, molecular markers and their applications, genomics, QTL mapping and genome selection techniques. The main problems of molecular genetic breeding in peanut research worldwide include: the narrow genetic resources of cultivated species, unstable genetic transformation and unclear molecular mechanism of important agronomic traits. Considering the severe challenges regarding the supply of edible oil, and the main problems in peanut production, the urgent research directions of peanut are put forward: The de novo domestication and the exploitation of excellent genes from wild resources to improve modern cultivars; Integration of multi-omics data to enhance the importance of big data in peanut genetics and breeding; Cloning the important genes related to peanut agronomic traits and analyzing their fine regulation mechanisms; Precision molecular design breeding and using gene editing technology to accurately improve the key traits of peanut.

8.
BMC Plant Biol ; 24(1): 244, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575936

RESUMO

BACKGROUND: This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS: The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS: Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.


Assuntos
Arachis , Estudo de Associação Genômica Ampla , Arachis/genética , Locos de Características Quantitativas/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
9.
Plants (Basel) ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611484

RESUMO

The B-box (BBX) gene family includes zinc finger protein transcription factors that regulate a multitude of physiological and developmental processes in plants. While BBX gene families have been previously determined in various plants, the members and roles of peanut BBXs are largely unknown. In this research, on the basis of the genome-wide identification of BBXs in three peanut species (Arachis hypogaea, A. duranensis, and A. ipaensis), we investigated the expression profile of the BBXs in various tissues and in response to salt and drought stresses and selected AhBBX6 for functional characterization. We identified a total of 77 BBXs in peanuts, which could be grouped into five subfamilies, with the genes from the same branch of the same subgroup having comparable exon-intron structures. In addition, a significant number of cis-regulatory elements involved in the regulation of responses to light and hormones and abiotic stresses were found in the promoter region of peanut BBXs. Based on the analysis of transcriptome data and qRT-PCR, we identified AhBBX6, AhBBX11, AhBBX13, and AhBBX38 as potential genes associated with tolerance to salt and drought. Silencing AhBBX6 using virus-induced gene silencing compromised the tolerance of peanut plants to salt and drought stresses. The results of this study provide knowledge on peanut BBXs and establish a foundation for future research into their functional roles in peanut development and stress response.

10.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611882

RESUMO

This study evaluated the impact of pulsed electric fields (PEFs) combined with three-phase partitioning (TPP) extraction methods on the physicochemical properties, functional properties, and structural characterization of the soluble dietary fiber (SDF) derived from peanut shells (PS). The findings of this study indicated that the application of a PEF-TPP treatment leads to a notable improvement in both the extraction yield and purity of SDF. Consequently, the PEF-TPP treatment resulted in the formation of more intricate and permeable structures, a decrease in molecular weight, and an increase in thermal stability compared to SDFs without TPP treatment. An analysis revealed that the PEF-TPP method resulted in an increase in the levels of arabinose and galacturonic acid, leading to enhanced antioxidant capacities. Specifically, the IC50 values were lower in SDFs which underwent PEF-TPP (4.42 for DPPH and 5.07 mg/mL for ABTS) compared to those precipitated with 40% alcohol (5.54 mg/mL for DPPH, 5.56 mg/mL for ABTS) and PEF75 (6.60 mg/mL for DPPH, 7.61 mg/mL for ABTS), respectively. Notably, the SDFs which underwent PEF-TPP demonstrated the highest water- and oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability, glucose adsorption, pancreatic lipase inhibition, cholesterol adsorption, nitric ion adsorption capacity, and the least gelation concentration. Based on the synthesis scores obtained through PCA (0.536 > -0.030 > -0.33), which indicated that SDFs which underwent PEF-TPP exhibited the highest level of quality, the findings indicate that PEF-TPP exhibits potential and promise as a method for preparing SDFs.


Assuntos
Antioxidantes , Arachis , Benzotiazóis , Ácidos Sulfônicos , Adsorção , Fibras na Dieta
11.
Artigo em Inglês | MEDLINE | ID: mdl-38639896

RESUMO

PURPOSE OF REVIEW: Based on shared decision-making (SDM) principles, a decision aid was previously developed to help patients, their caregivers, and physicians decide which peanut allergy management approach best suits them. This study refined the decision aid's content to better reflect patients' and caregivers' lived experience. RECENT FINDINGS: Current standard of care for peanut allergy is avoidance, although peanut oral immunotherapy has been approved by the Food and Drug Administration for use in patients 4-17 years old. An advisory board of allergy therapy experts (n = 3) and patient advocates (n = 3) informed modifications to the decision aid. The revised tool underwent cognitive debriefing interviews (CDIs) among adolescents (12-17 years old) with peanut allergy and caregivers of patients 4-17 years old with peanut allergy to evaluate its relevance, understandability, and usefulness. The 20 CDI participants understood the information presented in the SDM tool and reported it was important and relevant. Some revisions were made based on participant feedback. Results support content validity of the Peanut Allergy Treatment SDM Tool.

12.
J Environ Manage ; 358: 120863, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615396

RESUMO

This study aims to remove Congo red dye from industrial effluent using economical agriculturally-based nano-biosorbents like magnetic orange peel, peanut shells, and tea waste. The nano-biosorbents were characterized by various analytical techniques like SEM, FT-IR, BET and XRD. The highest adsorption capacity was obtained under the following ideal conditions: pH = 6 (orange peel and peanut shells), pH = 3 (tea waste), and dosages of nano-biosorbents with varying timeframes of 50 min for tea waste and peanut shells and 30 min for orange peel. The study found that tea waste had the highest removal rate of 94% due to its high porosity and responsible functional groups, followed by peanut shells at 83% and orange peel at 68%. The Langmuir isotherm model was found to be the most suitable, with R2 values of 0.99 for tea waste, 0.92 for orange peel, and 0.71 for peanut shells. On the other hand, a pseudo-second-order kinetic model was very feasible, showing an R2 value of 0.99 for tea waste, 0.98 for peanut shells and 0.97 for orange peel. The significance of the current study lies in its practical application, enabling efficient waste management and water purification, thereby preserving a clean and safe environment.

13.
Plant Dis ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616392

RESUMO

Peanut (Arachis hypogaea L.) is a globally high-value food crop, with Argentina ranking the third position in global peanut exports. However, Argentine peanut production faces a severe threat from a fungal disease: peanut smut caused by Thecaphora frezzii. This disease is particularly prevalent in Córdoba Province, where recent surveys have documented a gradual increase in prevalence and incidence of peanut smut, becoming a significant challenge to peanut production. First identified in Brazil in the 1960s in wild peanut and later in Argentina in 1995 in commercial peanut field, the disease has rapidly spread due to distinctive pathogen characteristics, including lack of visible symptoms on aerial plant parts, spore spread and survival, and a lack of proactive efforts to develop and apply management strategies. This results in gradually accumulating teliospores of T. frezzii in soil, further intensifying the problem in subsequent growing seasons, increasing the intensity of the disease and resulting in reduced yield and quality. This review summarizes recent research on peanut smut, focusing on disease assessment, molecular characterization, diagnosis and detection, epidemiology, host range and environmental conditions, and the latest advancements in management approaches, including fungicide spraying, breeding programs, cultural management and biological control, aimed to enhance understanding and support effective disease management strategies in peanut production systems.

14.
Plants (Basel) ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38592790

RESUMO

Soil compaction is one of the crucial factors that restrains the root respiration, energy metabolism and growth of peanut (Arachis hypogaea L.) due to hypoxia, which can be alleviated by ventilation. We therefore carried out a pot experiment with three treatments: no ventilation control (CK), (2) ventilation volumes at 1.2 (T1), and 1.5 (T2) times of the standard ventilation volume (2.02 L/pot). Compared to no-ventilation in compacted soil, ventilation T1 significantly increased total root length, root surface area, root volume and tips at the peanut anthesis stage (62 days after sowing), while T2 showed a negative impact on the above-mentioned root morphological characteristics. At the podding stage (S2, 95 days after sowing), both ventilation treatments improved root morphology, especially under T1. Compared to CK, both ventilation T1 and T2 decreased the activities of enzymes involving the anaerobic respiration, including root lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase. The activities of antioxidant enzymes of root superoxide dismutase, peroxidase and catalase also decreased at S1, while superoxide dismutase and peroxidase significantly increased under T1 at S2. The ventilation of compacted soil changed soil nitrogen-fixing bacterial communities, with highest bacterial alpha diversity indices under T1. The Pearson correlation analyses indicated a positive relationship between the relative abundance of Bradyrhizobiaceae and root activity, and between unclassified_family of Rhizobiales and the root surface area, while Enterobacteriaceae had a negative impact on the root nodule number. The Pearson correlation test showed that the root surface, tips and activity positively correlated with root superoxide dismutase and peroxidase activities. These results demonstrate that soil ventilation could enhance plant root growth, the diversity and function of soil nitrogen-fixing bacterial communities. The generated results from this present study could serve as important evidence in alleviating soil hypoxia caused by compaction.

15.
Int J Biol Macromol ; 268(Pt 1): 131699, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642689

RESUMO

Starch and peanut oil (PO) were widely used to improve the gel properties of surimi, however, the impact mechanism of addition forms on the denaturation and aggregation behavior of myofibrillar protein (MP) is not clear. Therefore, the effect of starch, PO, starch/PO mixture, and starch-based emulsion on the physicochemical and gel properties of MP was investigated. The results showed that amylose could accelerate the aggregation of MP, while amylopectin was conducive to the improvement of gel properties. The addition of PO, starch/PO mixture, or starch-based emulsion increased the turbidity, solubility, sulfhydryl content of MP, and improved the gel strength, whiteness, and texture of MP gel. However, compared with starch/PO mixture group, the gel strength of MP with waxy, normal and high amylose corn starch-based emulsion increased by 22.68 %, 10.27 %, and 32.89 %, respectively. The MP containing emulsion had higher storage modulus than MP with starch/PO mixture under the same amylose content. CLSM results indicated that the oil droplets aggregated in PO or starch/PO mixture group, while emulsified oil droplets filled the protein gel network more homogeneously. Therefore, the addition of starch and PO in the form of emulsion could effectively play the filling role to improve the gel properties of MP.

16.
Pediatr Allergy Immunol ; 35(4): e14127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646959

RESUMO

Peanut allergy affects about 1%-3% of the pediatric population in the world, with an important increase in the last decades. Nowadays, international guidelines recommend the early introduction of peanuts in the infant diet, with poor information about the quantity and the frequency of the intake. Allergen immunotherapy may represent the only therapeutic strategy able to modify the natural history of peanut allergy. In particular, oral immunotherapy showed the most promising results in terms of efficacy, but with significant rates of adverse reactions, mostly gastrointestinal. In 2020, the Food and Drug Administration and the European Medicines Agency approved Palforzia®, an oral drug for patients aged 4-17 years. Several studies are ongoing to improve the tolerability of oral immunotherapy and standardize the desensitization protocols. Sublingual immunotherapy permits to offer much lower doses than oral immunotherapy, but fewer adverse events are shown. Subcutaneous immunotherapy is associated with the greatest systemic adverse effects. Epicutaneous immunotherapy, for which Viaskin® patch was approved, has the highest safety profile. Innovative studies are evaluating the use of biological drugs, such as omalizumab or dupilumab, and probiotics, such as Lactobacillus rhamnosus, in monotherapy or associated with oral immunotherapy. Therapy for peanut allergy is constantly evolving, and new perspectives are ongoing to develop.

17.
Glob Health Action ; 17(1): 2336312, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38629142

RESUMO

BACKGROUND: Homemade peanut oil is widely consumed in rural areas of Southwestern China, which is easily contaminated by aflatoxins (AFs) and associated with adverse birth outcomes. OBJECTIVE: To identify the effect of exposure to homemade peanut oil consumption on low birth weight (LBW), preterm birth (PB) and other associated factors. METHODS: A prospective cohort study was conducted among pregnant women in Guangxi province, Southwestern China. Information of all eligible women on homemade peanut oil consumption and potential factors associated with LBW and PB was collected, and all were followed up until delivery. The effect of homemade peanut oil exposure was analyzed using multiple logistic regression models using the directed acyclic graph (DAG) approach. RESULTS: Of 1611 pregnant women, 1316 (81.7%) had consumed homemade peanut oil, and the rates of LBW and PB were 9.7% and 10.0%, respectively. Increased risks of LBW and PB in women with homemade peanut oil consumption were found with aORs of 1.9 (95% CI 1.1-3.2) and 1.8 (95% CI 1.1-3.0), respectively. Women with a history of PB or LBW were 3-5 times more likely to have higher rates of LBW or PB compared with those without this type of history. The odds of PB were approximately double in those taking medicine during pregnancy. Advanced maternal age, lack of physical exercise during pregnancy, passive smoking, or pregnancy complications were also more likely to have a higher risk of LBW. CONCLUSIONS: Homemade peanut oil consumption was a potential risk factor for both LBW and PB, of which health authorities who are responsible for food safety of the country should pay more attention to providing recommendation for oil consumption during pregnancy.


Main findings: Homemade peanut oil consumption was associated with increased risk of low birth weight and preterm birth, in addition to advanced age, adverse obstetric histories, and health risk behaviors during pregnancy in a county in Southwestern China.Added knowledge: This study identifies the direct and total effects of homemade peanut oil consumption on low birth weight and preterm birth and explains the factors associated with low birth weight and preterm birth in a county in Southwestern China.Global health impact for policy and action: Evidence of associated risk factors for low birth weight and preterm birth should be informed to the community, and precautionary policies for the protection of aflatoxin exposure during pregnancy are needed.


Assuntos
Complicações na Gravidez , Nascimento Prematuro , Recém-Nascido , Feminino , Gravidez , Humanos , Nascimento Prematuro/epidemiologia , Óleo de Amendoim , Estudos de Coortes , Estudos Prospectivos , China/epidemiologia , Recém-Nascido de Baixo Peso , Fatores de Risco , Peso ao Nascer , Resultado da Gravidez/epidemiologia
18.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1089-1101, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658151

RESUMO

Vitamin C plays an important role in plant antioxidation, photosynthesis, growth and development, and metabolism. In this study, a gene AhPMM, which is involved in vitamin C synthesis and responds significantly to low temperature, NaCl, polyethylene glycol (PEG) and abscisic acid (ABA) treatments, was cloned from peanut. An AhPMM overexpression vector was constructed, and transferred to a peanut variety Junanxiaohong using the pollen tube injection method. PCR test on the T3 generation transgenic peanut plants showed a transgenics positive rate of 42.3%. HPLC was used to determine the content of reducing vitamin C (AsA) and total vitamin C in the leaves of transgenic plants. The results showed that the content of AsA in some lines increased significantly, up to 1.90 times higher than that of the control, and the total vitamin content increased by up to 1.63 times compared to that of the control. NaCl and ABA tolerance tests were carried out on transgenic seeds. The results showed that the salt tolerance of transgenic seeds was significantly enhanced and the sensitivity to ABA was weakened compared to that of the non-transgenic control. Moreover, the salt tolerance of the transgenic plants was also significantly enhanced compared to that of the non-transgenic control. The above results showed that AhPMM gene not only increased the vitamin C content of peanut, but also increased the salt tolerance of transgenic peanut seeds and plants. This study may provide a genetic source for the molecular breeding of peanut for enhanced salt tolerance.


Assuntos
Ácido Abscísico , Arachis , Ácido Ascórbico , Plantas Geneticamente Modificadas , Estresse Fisiológico , Arachis/genética , Arachis/metabolismo , Ácido Ascórbico/biossíntese , Ácido Ascórbico/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/biossíntese , Cloreto de Sódio/farmacologia
19.
Front Plant Sci ; 15: 1362277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516669

RESUMO

Introduction: Peanut (Arachis hypogaea L.), also called groundnut is an important oil and cash crop grown widely in the world. The annual global production of groundnuts has increased to approximately 50 million tons, which provides a rich source of vegetable oils and proteins for humans. Low temperature (non-freezing) is one of the major factors restricting peanut growth, yield, and geographic distribution. Since the complexity of cold-resistance trait, the molecular mechanism of cold tolerance and related gene networks were largely unknown in peanut. Methods: In this study, comparative transcriptomic analysis of two peanut cultivars (SLH vs. ZH12) with differential cold tolerance under low temperature (10°C) was performed using Oxford Nanopore Technology (ONT) platform. Results and discussion: As a result, we identified 8,949 novel gene loci and 95,291 new/novel isoforms compared with the reference database. More differentially expressed genes (DEGs) were discovered in cold-sensitive cultivar (ZH12) than cold-tolerant cultivar (SLH), while more alternative splicing events were found in SLH compared to ZH12. Gene Ontology (GO) analyses of the common DEGs showed that the "response to stress", "chloroplast part", and "transcription factor activity" were the most enriched GO terms, indicating that photosynthesis process and transcription factors play crucial roles in cold stress response in peanut. We also detected a total of 708 differential alternative splicing genes (DASGs) under cold stress compared to normal condition. Intron retention (IR) and exon skipping (ES) were the most prevalent alternative splicing (AS) events. In total, 4,993 transcription factors and 292 splicing factors were detected, many of them had differential expression levels and/or underwent AS events in response to cold stress. Overexpression of two candidate genes (encoding trehalose-6-phosphatephosphatases, AhTPPs) in yeast improves cold tolerance. This study not only provides valuable resources for the study of cold resistance in peanut but also lay a foundation for genetic modification of cold regulators to enhance stress tolerance in crops.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38526693

RESUMO

Peanut allergy is a leading cause of severe food reactions. This meta-analysis evaluates the efficacy and safety of epicutaneous immunotherapy (EPIT) compared to placebo for peanut-allergic individuals. After prospectively registering on PROSPERO, we searched three databases (PubMed, Google Scholar, and Cochrane CENTRAL) and 2 trial registries till September 2023. Analysis was conducted via RevMan where data was computed using risk ratios (RR). The Cochrane Risk of Bias tool and GRADE criteria were used to appraise and evaluate the evidence. From 4927 records, six multicenter randomized placebo-controlled trials comprising 1453 participants were included. The 250 µg EPIT group had a significant increase in successful desensitization compared to placebo (RR: 2.13 (95% C.I: 1.72, 2.64), P < 0.01, I2 = 0%), while the 100 µg EPIT group did not (RR: 1.54 (95% C.I: 0.92, 2.58), P = 0.10, I2 = 0%) (moderate certainty evidence). Moreover, there was a significant increase in local (RR: 1.69 (95% C.I: 1.06, 2.68), P = 0.03, I2 = 89%) and systemic adverse events (RR: 1.75 (95% C.I: 1.14, 2.69), P = 0.01, I2 = 0%) with EPIT. Additionally, individuals administered EPIT have an increased probability of requiring rescue medications like epinephrine (RR: 1.91 (95% C.I: 1.12, 3.28), P = 0.02, I2 = 0%) and topical corticosteroids (RR: 1.49 (95% C.I: 1.29, 1.73), P < 0.01, I2 = 0%) to treat adverse events. The association of adverse events post-treatment including anaphylaxis (RR: 2.31 (95% C.I: 1.00, 5.33), P = 0.05, I2 = 36%), skin/subcutaneous disorders like erythema or vesicles (RR: 0.93 (95% C.I: 0.79, 1.08), P = 0.33, I2 = 0%), and respiratory disorders like dyspnea or wheezing (RR: 0.94 (95% C.I: 0.77, 1.15), P = 0.55, I2 = 0%) with EPIT is inconclusive. EPIT, although effective in desensitization, is linked to an increased risk of adverse events. PROSPERO registration: CRD42023466600.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...